Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytochemistry ; 220: 114018, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342288

RESUMEN

Steroidal alkaloids are the main bioactive components of the bulbs of Fritillaria, which have been used as traditional Chinese medicine, known as "Beimu", for the treatment of cough for thousands of years in China. Cough and dyspnea are the most common symptoms observed in patients with pulmonary fibrosis. However, the antifibrotic activity of steroidal alkaloids has not been reported yet. In this study, two previously unreported cevanine-type steroidal alkaloids (1 and 2), four previously undescribed cevanine-type alkaloid glycosides (3-6), and 19 known steroidal alkaloids (7-25) were isolated from the bulbs of Fritillaria unibracteata var. wabuensis. The structures of these compounds were elucidated by comprehensive HRESIMS and NMR spectroscopic data analysis, as well as DP4+ NMR calculations. The biological evaluation showed that compounds 2, 7-10, 14, 15, and 17 downregulated fibrotic markers induced by transforming growth factor-ß (TGF-ß) in MRC-5 cells. Moreover, compounds 14 and 17 dose dependently inhibited TGF-ß-induced epithelial-mesenchymal transition in A549 cells, alleviated TGF-ß-induced migration and proliferation of fibroblasts, and decreased the expression of fibrotic markers, fibronectin, and N-cadherin in TGF-ß-induced MRC-5 cells. The research showed the potential of cevanine-type alkaloids as a class of natural antifibrotic agents.


Asunto(s)
Alcaloides , Fritillaria , Humanos , Fritillaria/química , Alcaloides/química , Raíces de Plantas/química , Tos , Esteroides/química , Factor de Crecimiento Transformador beta/análisis
2.
Phytomedicine ; 123: 155228, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006808

RESUMEN

BACKGROUND: Fritillaria Bulbus (FB), a precious medicinal herb renowned for its heat-clearing, lung-moistening, cough-relieving and phlegm-eliminating effects. In pursuit of profits, unscrupulous merchants have engaged in the substitution or adulteration of valuable varieties with cheaper alternatives. It is, therefore, urgent to develop effective technical approaches to identify FBs from adulterants. METHODS: This paper employed infrared spectroscopy (IR), thin layer chromatography-image analysis (TLC-IA), and untargeted metabolomics techniques to discriminate ten species of FBs. RESULTS: Five species of FBs were successfully differentiated using mid-infrared spectroscopy. Furthermore, the power of TLC-IA technology allowed the differentiation of five species of FBs and two origins of FCBs (Fritillariae Cirrhosae Bulbus). Remarkably, through the application of untargeted metabolomics technique, the precise discrimination of five species of FBs, as well as three origins of FCBs were accomplished. Moreover, a comprehensive identification of 101 markers that reliably distinguished diverse FBs was achieved through the employment of untargeted metabolomics technique. CONCLUSION: The investigation presented powerful means of detection for assuring the quality control of Fritillaria herbs.


Asunto(s)
Fritillaria , Plantas Medicinales , Fritillaria/química , Cromatografía en Capa Delgada , Plantas Medicinales/química , Control de Calidad , Análisis Espectral , Metabolómica
3.
Sci Rep ; 13(1): 18801, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914761

RESUMEN

The Fritillaria species ranked as a well-known traditional medicine in China and has become rare due to excessive harvesting. To find reasonable strategy for conservation and cultivation, identification of new ecological distribution of Fritillaria species together with prediction of those responses to climate change are necessary. In terms of current occurrence records and bioclimatic variables, the suitable habitats for Fritillaria delavayi, Fritillaria taipaiensis, and Fritillaria wabuensis were predicted. In comparison with Maxent and GARP, Biomod2 obtained the best AUC, KAPPA and TSS values of larger than 0.926 and was chosen to construct model. Temperature seasonality was indicated to put the greatest influence on Fritillaria taipaiensis and Fritillaria wabuensis, while isothermality was of most importance for Fritillaria delavayi. The current suitable areas for three Fritillaria species were distributed in south-west China, accounting for approximately 17.72%, 23.06% and 20.60% of China's total area, respectively. During 2021-2100 period, the suitable habitats of F. delavayi and F. wabuensis reached the maximum under SSP585 scenario, while that of F. taipaiensis reached the maximum under SSP126 scenario. The high niche overlap among three Fritillaria species showed correlation with the chemical composition (P ≤ 0.05), while no correlation was observed between niche overlap and DNA barcodes, indicating that spatial distribution had a major influence on chemical composition in the Fritillaria species. Finally, the acquisition of species-specific habitats would contribute to decrease in habitat competition, and future conservation and cultivation of Fritillaria species.


Asunto(s)
Cambio Climático , Fritillaria , Fritillaria/genética , Ecosistema , China , Temperatura
4.
Arch Microbiol ; 206(1): 1, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37987846

RESUMEN

Fritillaria taipaiensis P. Y. Li is one of the biological sources for Fritillariae Cirrhosae Bulbus. Its bulbs are widely used for treating respiratory diseases such as pneumonia, bronchitis and influenza. Cultivated F. taipaiensis suffers from many diseases during its growing season. Leaf spot is a destructive disease that is increasingly affecting F. taipaiensis and can cause an incidence of up to 30% in severe cases. Leaf spot inhibits the growth of F. taipaiensis by causing disease spots on the surface of leaves. In severe cases, these spots can result in leaf desiccation and blackspot formation at the lesion site, leading to a decrease in photosynthesis. Leaf spot has shown little benefit, and it can even result in a reduced yield of bulbs and the death of plants. According to previous studies, Alternaria alternata has been identified as the pathogen of leaf spot in many medicinal plants, but the main pathogens of the leaf spot of F. taipeiensis remains uncertain. In this paper, five isolates from diseased leaves of F. taipaiensis were isolated and purified and the pathogenicity test showed that isolates B-5 and B-7 induced leaf spot symptoms on healthy F. taipaiensis leaves. Integrating multiple phylogenetic analyses of rDNA using Internal transcribed spacer region (ITS), Beta-tubulin (TUB2), RNA polymerase II second largest subunit (RPB2) and Translation elongation factor 1-alpha (TEF1-a) primers, strain B-5 and strain B-7 were eventually identified as Didymella segeticola and A. alternata. This is also the first report on the pathogens that cause leaf spot in F. taipaiensis in China.


Asunto(s)
Fritillaria , Fritillaria/genética , Filogenia , China , Iones , Cartilla de ADN
5.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4370-4380, 2023 Aug.
Artículo en Chino | MEDLINE | ID: mdl-37802863

RESUMEN

This study aimed to establish a method based on machine learning technology for accurately predicting the commodity specifications of Fritillariae Cirrhosae Bulbus and explore the application of data augmentation technology in the field of drug analysis. The correlation optimized warping(COW) algorithm was used to perform peak calibration on the UPLC-QDA multi-channel superimposed data of 30 batches of samples, and the data were normalized. Through unsupervised learning methods such as clustering analysis, principal component analysis(PCA), and correlation analysis, the general characteristics of the data were understood. Then, the logistic regression algorithm was used for supervised learning on the data, and the condition tabular generative adversarial networks(CTGAN) was used to generate a large amount of data. Logistic regression classification models were trained separately using the real data and the data generated by CTGAN, and these models were evaluated. The logistic regression model trained with real data achieved cross-validation and test set accuracies of 0.95 and 1.00, respectively, while the logistic regression model trained with both real and CTGAN-generated data achieved cross-validation and test set accuracies of 0.99 and 1.00, respectively. The results indicate that machine learning can accurately predict the classification of Songbei, Qingbei, and Lubeibased on UPLC-QDA detection data. CTGAN-generated data can partially compensate for the lack of data in drug analysis, improving the accuracy and predictive ability of machine learning models.


Asunto(s)
Medicamentos Herbarios Chinos , Fritillaria , Tecnología , Aprendizaje Automático , Raíces de Plantas
6.
J Food Sci ; 88(11): 4745-4772, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37751083

RESUMEN

Fritillaria cirrhosa D. Don, which can be used for medicine and food, contains a variety of chemicals including polyphenols, alkaloids, terpenoid, and others that have beneficial biological properties like antihypertension, bacteriostasis, and anti-inflammatory. The ethanolic extract of Fritillaria straw was obtained for this study using ultrasonic-aided extraction, and the amounts of total phenols and total flavonoids were 26.56 ± 1.36 mg GAE/g dw and 18.75 ± 0.80 mg RE/g dw, respectively. Ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry technology was utilized to identify 50 major chemicals in the Fritillaria straw extract (FSE). Meanwhile, the antioxidative activities of FSE were evaluated by 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and Ferric reducing antioxidant power assays in vitro, which pointed out the antioxidative potential of FSE. Additionally, 0.1%, 0.5%, and 1% of FSE and 0.02% butylated hydroxyanisole (BHA) + butylated hydroxytoluene (BHT) (1:1) were separately added to Chinese-style sausage to study their effects on the lipid oxidation, protein oxidation, and quality of the sausage at different storage times. The study found that the effect of adding 1% FSE on carbonyl content, total volatile basic nitrogen, and TVC of sausage could achieve the effect of the 0.02% BHA + BHT (1:1) group on the 35th day, and the thiobarbituric acid reactive substances value and peroxide value of sausage were significantly lower than the control group. Therefore, as one of the candidates to replace synthetic antioxidants, the FSE can be used in the production of Chinese sausages, which has a positive effect on improving the product's quality and extending the shelf life. PRACTICAL APPLICATION: The antioxidative activities of 50 main compounds were identified after the ethanolic extraction of Fritillaria straw. This Fritillaria straw extract was added to Chinese sausage, effectively inhibiting the oxidation of lipids and proteins as well as the decomposition of proteins. Obviously, the Fritillaria straw extract, one of the choices to replace synthetic antioxidants, may be useful for future meat processing, because of its positive impact on the product's quality and shelf life.


Asunto(s)
Antioxidantes , Fritillaria , Productos de la Carne , Extractos Vegetales , Antioxidantes/análisis , Fritillaria/química , Lípidos , Oxidación-Reducción , Extractos Vegetales/química
7.
Phytochemistry ; 214: 113831, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37598994

RESUMEN

Fritillaria unibracteata is an endangered medicinal plant whose bulb has been used as a Chinese herb to suppress cough, asthma and excessive phlegm for centuries. Steroidal alkaloids, which are synthesized via the steroid synthesis pathways, are their significant bioactive constituents. However, few studies on genes involved in steroidal alkaloid biosynthesis in F. unibracteata have been reported, mainly due to the lack of the F. unibracteata genome. In this paper, comparative transcriptomic and metabolomic analyses of four different tissues of F. unibracteata (leaves, flowers, stems, and bulbs) were performed. Imperialine, peiminine, and peimisine were among the significant bioactive compounds that were considerably abundant in bulb tissue, according to the metabolomic findings. Then, 83.60 Gb transcriptome sequencing of four different tissues was performed, of which one gene encoding phosphomevalonate kinase was directly functionally characterized to verify the accuracy of sequences obtained from the transcriptome. A total of 9217 differentially expressed unigenes (DEGs) were identified in four different tissues of F. unibracteata. GO and KEGG enrichments revealed that phenylpropanoid biosynthesis, MVA-mediated terpenoid backbone biosynthesis, and steroid biosynthesis were enriched in bulb tissue, whereas enrichment of MEP-mediated terpenoid backbone biosynthesis, photosynthesis, photosynthesis-antenna protein and carotenoid biosynthesis was observed in aerial tissues. Moreover, clustering analysis indicated that the downstream steroid biosynthesis pathway was more important in steroidal alkaloid biosynthesis compared to the upstream terpenoid backbone biosynthesis pathway. Hence, MVA-mediated biosynthesis of steroidal alkaloids was proposed, in which 15 bulb-clustered DEGs were positively correlated with a high accumulation of bioactive steroid alkaloids, further validating our proposal. In addition, 36 CYP450s showing a positive correlation with bioactive steroidal alkaloids provided candidate enzymes to catalyze the subsequent steps of steroidal alkaloid biosynthesis. In addition, the transcription factors and ABC transporters clustered in bulb tissue might be responsible for the regulation and transportation of steroidal alkaloid biosynthesis. Protein-protein interaction analysis implied a highly complex steroid alkaloid biosynthesis network in which delta (24)-sterol reductase might be one of the central catalysts. Based on the integrated transcriptome and metabolome, this current study is a first step in understanding the tissue-specific biosynthesis of steroidal alkaloids in F. unibracteata. Furthermore, key genes and regulators identified herein could facilitate metabolic engineering to improve steroidal alkaloids in F. unibracteata.


Asunto(s)
Alcaloides , Fritillaria , Transcriptoma , Esteroides , Terpenos
8.
Phytomedicine ; 118: 154946, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421766

RESUMEN

BACKGROUND: Asthma is a chronic inflammatory disease that is challenging to treat. Fritillaria unibracteata var. wabuensis (FUW) is the plant origin for the famous Chinese antitussive medicine Fritillaria Cirrhosae Bulbus. The total alkaloids of Fritillaria unibracteata var. wabuensis bulbus (TAs-FUW) have anti-inflammatory properties and may be used to treat asthma. PURPOSE: To explore whether TAs-FUW have bioactivity against airway inflammation and a therapeutic effect on chronic asthma. METHODS: The alkaloids were extracted via ultrasonication in a cryogenic chloroform-methanol solution after ammonium-hydroxide percolation of the bulbus. UPLC-Q-TOF/MS was used to characterize the composition of TAs-FUW. An ovalbumin (OVA)-induced asthmatic mouse model was established. We used whole-body plethysmography, ELISA, western blotting, RT-qPCR, and histological analyses to assess the pulmonary pathological changes in these mice after TAs-FUW treatment. Additionally, TNF-α/IL-4-induced inflammation in BEAS-2B cells was used as an in vitro model, whereby the effects of various doses of TAs-FUW on the TRPV1/Ca2+-dependent NFAT-induced expression of TSLP were assessed. Stimulation and inhibition of TRPV1 receptors by capsaicin (CAP) and capsazepine (CPZ), respectively, were used to validate the effect of TAs-FUW. RESULTS: The UPLC-Q-TOF/MS analysis revealed that TAs-FUW mainly contain six compounds (peiminine, peimine, edpetiline, khasianine, peimisine, and sipeimine). TAs-FUW improved airway inflammation and obstruction, mucus secretion, collagen deposition, and leukocyte and macrophage infiltration, and downregulated TSLP by inhibiting the TRPV1/NFAT pathway in asthmatic mice. In vitro, the application of CPZ demonstrated that the TRPV1 channel is involved in TNF-α/IL-4-mediated regulation of TSLP. TAs-FUW suppressed TNF-α/IL-4-induced TSLP generation expression by regulating the TRPV1/Ca2+/NFAT pathway. Furthermore, TAs-FUW reduced CAP-induced TSLP release by inhibiting TRPV1 activation. Notably, sipeimine and edpetiline each were sufficient to block the TRPV1-mediated Ca2+ influx. CONCLUSION: Our study is the first to demonstrate that TNF-α/IL-4 can activate the TRPV1 channel. TAs-FUW can alleviate asthmatic inflammation by suppressing the TRPV1 pathway and thereby preventing the increase in cellular Ca2+ influx and the subsequent NFAT activation. The alkaloids in FUW may be used for complementary or alternative therapies in asthma.


Asunto(s)
Alcaloides , Asma , Fritillaria , Ratones , Animales , Factor de Necrosis Tumoral alfa , Interleucina-4 , Alcaloides/farmacología , Alcaloides/uso terapéutico , Asma/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Ovalbúmina , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Canales Catiónicos TRPV/uso terapéutico
9.
Int J Biol Macromol ; 242(Pt 2): 124817, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182621

RESUMEN

Fritillaria is a traditional Chinese medicine(TCM) with a history of thousands of years. Fritillaria always contain saponins, alkaloids, amino acids, flavones, and polysaccharides. Among them, Fritillaria polysaccharide has a variety of biological activities. Its anti-inflammatory and antiaging activities are new study hotspots. The extraction, purification, quantitative determination, monosaccharide composition, and biological activity of Fritillaria polysaccharides have been examined for several years in an attempt to identify the active components and understand the pharmacological process. In this review, ample original publications related to the distribution, extraction, purification, quantitative determination, monosaccharide composition and biological activities of Fritillaria until 2023 were searched and collected by using various literature databases. Databases included the China National Knowledge Infrastructure, VIP database, Wan Fang database, PubMed, Elsevier, Springer, Science Direct, Google Scholar and Web of Science database, as well as the classic Chinese medical books and PhD and MSc theses. The properties and outcomes of various extractions, purifications, quantitative determination methods, monosaccharide compositions, and biological activities of Fritillaria polysaccharides are discussed here. Additionally, we summarize the research potential of Fritillaria polysaccharide and identify promising research direction candidates.


Asunto(s)
Medicamentos Herbarios Chinos , Fritillaria , Fritillaria/química , Medicina Tradicional China , Medicamentos Herbarios Chinos/química , Monosacáridos , Polisacáridos/química , Fitoquímicos/farmacología
10.
Fitoterapia ; 168: 105553, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37257697

RESUMEN

Three undescribed lignan glycosides, echiunines E-G (1-3), as well as eight known compounds (4-11) were isolated from Fritillaria verticillata Willd. Among them, compounds 1-3 were a series of lignan glycosides reported for the first time from genus Fritillaria. Their structures were elucidated by analyses of extensive spectroscopic data and comparison of the NMR data with those reported previously, the absolute configuration of compounds were further confirmed by calculated ECD method. The NO release inhibitory effects of compounds were evaluated in LPS-activated RAW264.7 macrophages. Compounds 7-8 showed inhibitory acitivities in a dose-dependent manner.


Asunto(s)
Fritillaria , Lignanos , Lignanos/farmacología , Lignanos/química , Estructura Molecular , Glicósidos/farmacología , Glicósidos/química , Antiinflamatorios/farmacología , Antiinflamatorios/química
11.
Molecules ; 28(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37110593

RESUMEN

Fast detection of heavy metals is important to ensure the quality and safety of herbal medicines. In this study, laser-induced breakdown spectroscopy (LIBS) was applied to detect the heavy metal content (Cd, Cu, and Pb) in Fritillaria thunbergii. Quantitative prediction models were established using a back-propagation neural network (BPNN) optimized using the particle swarm optimization (PSO) algorithm and sparrow search algorithm (SSA), called PSO-BP and SSA-BP, respectively. The results revealed that the BPNN models optimized by PSO and SSA had better accuracy than the BPNN model without optimization. The performance evaluation metrics of the PSO-BP and SSA-BP models were similar. However, the SSA-BP model had two advantages: it was faster and had higher prediction accuracy at low concentrations. For the three heavy metals Cd, Cu and Pb, the prediction correlation coefficient (Rp2) values for the SSA-BP model were 0.972, 0.991 and 0.956; the prediction root mean square error (RMSEP) values were 5.553, 7.810 and 12.906 mg/kg; and the prediction relative percent deviation (RPD) values were 6.04, 10.34 and 4.94, respectively. Therefore, LIBS could be considered a constructive tool for the quantification of Cd, Cu and Pb contents in Fritillaria thunbergii.


Asunto(s)
Fritillaria , Metales Pesados , Fritillaria/química , Cadmio , Plomo , Metales Pesados/análisis , Análisis Espectral/métodos , Algoritmos , Rayos Láser
12.
J Ethnopharmacol ; 310: 116389, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-36924862

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fritillaria cirrhosa D.Don (Syn: Fritillaria roylei Hook.) (Hindi name: Kshirakakoli) is a critically endangered Himalayan medicinal plant, well documented in Ayurveda for its therapeutic uses against various disorders such as jvara (fever), kasa (respiratory tract disease) etc. Its bulbs are also used as Szechuan-Pei-Mu for their antipyretic properties in the traditional Chinese medicine. However, despite its ethnomedicinal usage, the therapeutic use of F. cirrhosa bulbs for jvara (fever) related conditions such as malaria has remained unexplored. Hence in the context of increasing global concerns about drug-resistant malaria, it is important to investigate the antiplasmodial activity of F. cirrhosa bulbs for novel antimalarial agents. AIM OF THE STUDY: To investigate the antiplasmodial effects of the extracts/fractions of F. cirrhosa bulbs by the biochemometric approach and to rationalize its ethnopharmacological usage for jvara (fever) related conditions such as malaria. MATERIAL AND METHODS: This study involves the UHPLC-MS-based plant material selection, preparation, quantification, and assessment of F. cirrhosa bulb extracts against CQ-sensitive Pf 3D7 & CQ-resistant Pf INDO strains. Further, UPLC-IM-Q-TOF-MS-based biochemometric approach has been applied for the identification of marker compounds responsible for the observed antiplasmodial effects. The identified marker compounds were also assessed for their in silico ADMET properties and binding efficacy with the drug transporter Pf CRT. RESULTS: Different F. cirrhosa bulb extracts/fractions showed promising antiplasmodial activity with IC50 values 2.71-19.77 µg/mL for CQ-resistant Pf INDO strain and 1.76-21.52 µg/mL for CQ-sensitive Pf 3D7 strain. UPLC-IM-Q-TOF-MS/MS-based biochemometric analysis revealed four marker compounds i.e., peimine (m/z 432.3448), peimisine (m/z 428.3504), puqiedinone (m/z 414.3379), and puqiedine (m/z 416.3509) responsible for the observed antiplasmodial activity. The identified marker compounds showed excellent binding efficacy with Pf CRT and suitable drug-like properties in silico. CONCLUSIONS: The study demonstrated promising antiplasmodial activity of the chloroform and alkaloid enriched fractions of F. cirrhosa bulbs and further identified the four marker compounds responsible for the promising antiplasmodial activity. These marker compounds i.e., peimine, peimisine, puqiedinone and puqiedine were identified by the biochemometric analysis as the putative antiplasmodial constituents of the F. cirrhosa bulbs. Further, in silico studies indicated the good binding affinity of the marker compounds with Pf CRT along with suitable ADMET properties. Overall, the study elucidates the antiplasmodial activity of F. cirrhosa bulbs from the western Himalayan region and provides nascent scientific evidence for their ethnopharmacological usage in jvara (fever) related conditions such as malaria.


Asunto(s)
Antimaláricos , Fritillaria , Plantas Medicinales , Fritillaria/química , Antimaláricos/farmacología , Espectrometría de Masas en Tándem , Plantas Medicinales/química , Extractos Vegetales/farmacología
13.
J Vis Exp ; (193)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36939253

RESUMEN

We aimed to study the mechanism of Trichosanthes-Fritillaria thunbergii in treating lung adenocarcinoma (LUAD) based on network pharmacology and experimental verification. The effective components and potential targets of Trichosanthis and Fritillaria thunbergii were collected by high-throughput experiment and reference-guided (HERB) database of traditional Chinese medicine and a similarity ensemble approach (SEA) database, and the LUAD-related targets were queried by the GeneCards and Online Mendelian Inheritance in Man (OMIM) databases. A drug-component-disease-target network was constructed by Cytoscape software. Protein-protein interaction (PPI) network, gene ontology (GO) function, and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were conducted to obtain core targets and key pathways. An aqueous extract of Trichosanthes-Fritillaria thunbergii and A549 cells were used for the subsequent experimental validation. Through the HERB database and literature search, 31 effective compounds and 157 potential target genes of Trichosanthes-Fritillaria thunbergii were screened, of which 144 were regulatory targets of Trichosanthes-Fritillaria thunbergii in the treatment of lung adenocarcinoma. The GO functional enrichment analysis showed that the mechanism of action of Trichosanthes-Fritillaria thunbergii against lung adenocarcinoma is mainly protein phosphorylation. The KEGG pathway enrichment analysis suggested that the treatment of lung adenocarcinoma by Trichosanthes-Fritillaria thunbergii mainly involves the PI3K/AKT signaling pathway. The experimental validation showed that an aqueous extract of Trichosanthes-Fritillaria thunbergii could inhibit the proliferation of A549 cells and the phosphorylation of AKT. Through network pharmacology and experimental validation, it was verified that the PI3K/AKT signaling pathway plays a vital role in the action of Trichosanthes-Fritillaria thunbergii in treating lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Fritillaria , Neoplasias Pulmonares , Trichosanthes , Humanos , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Adenocarcinoma del Pulmón/tratamiento farmacológico , Bases de Datos Genéticas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Simulación del Acoplamiento Molecular
14.
Regul Toxicol Pharmacol ; 139: 105342, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36731760

RESUMEN

Fritillaria Cirrhosa bulbus (BFC) is a Chinese herbal medicine. In the present study, subchronic toxicities of the ethanol extract from cultivated Fritillaria Cirrhosa bulbus (ECBFC) were performed by oral daily administration in Sprague-Dawley rats. The subchronic toxicity test of ECBFC was conducted at doses of 0.34, 0.68, and 2.04 g/kg/day for 90 days (equivalent to the highest human clinical recommend dosage of 25, 50, and 150-fold) with a 4-week satellite group. No mortality or significant changes in behaviors, body weight and food consumption were observed during the experimental and recovery periods. According to the data from ematological analysis, biochemistry, organ coefficient and the results of histopathology, the ECBFC have toxicity to the spleen and liver at the highest (2.04 g/kg), medium (0.68 g/kg) dose and nephrotoxicity at the highest dose. Subchronic oral toxicity of ECBFC in SD rats (90 days) with NOAEL was 0.34 g/kg and LOAEL was 0.68 g/kg. In addition, the toxicity is gender neutral and reversible. The NOAEL value (0.34 g/kg) is 25-fold of the highest human clinical recommend dosage thus the ECBFC could be long-term used as Chinese patent medicine or functional food.


Asunto(s)
Fritillaria , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Etanol/toxicidad , Extractos Vegetales/toxicidad , Pruebas de Toxicidad Subcrónica , Administración Oral
15.
Sci Total Environ ; 872: 162049, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36804984

RESUMEN

Few studies have focused on the growth, soil quality and sustainability of medicinal plants under different soil conditions. In this study, the spatial heterogeneity of soil physical and chemical properties, the diversity of rhizosphere soil microbial community structure, and the characteristics of growth of the wild and cultivated medicinal plant, Siberian fritillary (Fritillaria pallidiflora Schrek) were analyzed, and the soil quality and ecosystem sustainability were comprehensively evaluated. The results showed that there was significant spatial variability of soil nutrients in the different habitats. Nitrate nitrogen (NO3-N) was strongly variable, while those of the soil organic carbon (SOC) and available phosphorus (AP) were moderately variable. There was little variability among the soil available potassium (AK), electrical conductivity (EC), pH and ammonium nitrogen (NH4-N). Inverse Distance Weighting spatial interpolation showed that SOC, NO3-N, NH4-H and EC were highly distributed in the southeastern part of the wild area, and the soil was more acidic in the original habitat than in the planting habitat. There was little AK and AP in the native habitat, and there was a high content in the planting habitat. Simultaneously, the soil microbial communities of the two soils also differed. The wild-type soil showed a "fungal" type, while the planted soil showed a "bacterial" type. Pathogenic bacteria were among the primary microflora in the planting area. In general, it is difficult to maintain the sustainable development and geo-herbalism of F. pallidiflora in today's cultivation mode because of the significant differences in soil nature, spatial heterogeneity and microbial community structure for the growth of F. pallidiflora. Therefore, future planting should focus on transforming it from intensive to mountain forest planting. This is highly significant for improving the planting efficiency of F. pallidiflora, protecting their geo-herbalism and germplasm resources, and maintaining the stability and sustainable development of the ecosystem.


Asunto(s)
Fritillaria , Microbiota , Plantas Medicinales , Suelo/química , Fritillaria/química , Carbono , Bacterias , Nitrógeno/análisis , Microbiología del Suelo
16.
Rapid Commun Mass Spectrom ; 37(1): e9403, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36184262

RESUMEN

RATIONALE: Fritillaria cirrhosae bulbus (BFC), a typical traditional Chinese medicine with multiple botanical sources, has been used for relieving cough and reducing sputum. Studies have shown that there were obvious differences in the chemical compositions and clinical efficacy of different sources of BFC. How to characterise BFC from botanical sources accurately and quickly is vital for drug quality evaluation and clinical applications. METHODS: In the present study, an integrated strategy of plant metabolomics combined with the target network pharmacology was developed to characterise BFC. Plant metabolomics analysis was performed to screen out the chemical markers of six species of BFC. Then, target network pharmacology was applied to explore the relationship between chemical markers and related diseases. Finally, potential Q-markers for species characterization were selected by combined analysis of plant metabolomics and the target network pharmacology. RESULTS: A total of 67 Fritillaria alkaloid compounds were identified. Six species showed clear characterization by multivariate statistical analysis, resulting in 12 chemical markers. Meanwhile, a total of nine components related to asthma were screened out based on the target network pharmacology. Taking content difference and pharmacological activity into consideration, nine constituents were selected as potential Q-markers. CONCLUSION: The method developed provided not only a standard protocol for characterising different species of BFC directly, but also an effective approach for multisource medicines discrimination.


Asunto(s)
Medicamentos Herbarios Chinos , Fritillaria , Medicamentos Herbarios Chinos/química , Farmacología en Red , Fritillaria/química , Medicina Tradicional China , Metabolómica
17.
Molecules ; 27(20)2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36296537

RESUMEN

Both the bulbs and flowers of Fritillaria thunbergii Miq. (BFT and FFT) are widely applied as expectorants and antitussives in traditional Chinese medicine, but few studies have been conducted to compare the chemical compositions of these plant parts. In this study, 50% methanol extracts of BFT and FFT were analyzed via UHPLC-Q-Exactive Orbitrap MS/MS, and the feasibility of using non-targeted UHPLC-HRMS metabolomics and molecular networking to address the authentication of bulb and flower samples was evaluated. Principal component analysis (PCA), Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA), and heat map analysis showed there were dissimilar metabolites in BFT and FFT. As a result, 252 and 107 peaks in positive ion mode and negative mode, respectively, were considered to represent significant difference variables between BFT and FFT. Then, MS/MS-based molecular networking of BFT and FFT was constructed to perform an in-depth characterization of the peaks using different variables. A total of 31 alkaloids with significant differences were annotated in this paper, including seven cis-D/E-vevanine without C20-OH and one trans-D/E-cevanine with C20-OH, thirteen trans-D/E-cevanine without C20-OH, five cevanine N-oxide, and five veratramine. Among the 31 alkaloids, eight alkaloids had higher FFT than BFT contents, while all the flavonoids identified in our work had greater FFT than BFT contents. The influence of different ingredients on the pharmacological activities of BFT and FFT should be investigated in future studies.


Asunto(s)
Alcaloides , Antitusígenos , Fritillaria , Fritillaria/química , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Expectorantes , Metanol , Metabolómica , Alcaloides/química , Flores , Flavonoides , Óxidos
18.
Molecules ; 27(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36144775

RESUMEN

Traditional Chinese herbal medicine (TCHM) plays an essential role in the international pharmaceutical industry due to its rich resources and unique curative properties. The flowers, stems, and leaves of Fritillaria contain a wide range of phytochemical compounds, including flavonoids, essential oils, saponins, and alkaloids, which may be useful for medicinal purposes. Fritillaria thunbergii Miq. Bulbs are commonly used in traditional Chinese medicine as expectorants and antitussives. In this paper, a feasibility study is presented that examines the use of hyperspectral imaging integrated with convolutional neural networks (CNN) to distinguish twelve (12) Fritillaria varieties (n = 360). The performance of support vector machines (SVM) and partial least squares-discriminant analysis (PLS-DA) was compared with that of convolutional neural network (CNN). Principal component analysis (PCA) was used to assess the presence of cluster trends in the spectral data. To optimize the performance of the models, cross-validation was used. Among all the discriminant models, CNN was the most accurate with 98.88%, 88.89% in training and test sets, followed by PLS-DA and SVM with 92.59%, 81.94% and 99.65%, 79.17%, respectively. The results obtained in the present study revealed that application of HSI in conjunction with the deep learning technique can be used for classification of Fritillaria thunbergii varieties rapidly and non-destructively.


Asunto(s)
Alcaloides , Antitusígenos , Aprendizaje Profundo , Medicamentos Herbarios Chinos , Fritillaria , Aceites Volátiles , Saponinas , Alcaloides/análisis , Medicamentos Herbarios Chinos/química , Expectorantes , Flavonoides , Fritillaria/química , Imágenes Hiperespectrales , Fitoquímicos , Tecnología
19.
Fitoterapia ; 162: 105283, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36007807

RESUMEN

Acute lung injury (ALI), a severe respiratory disorder, frequently develops into acute respiratory distress syndrome (ARDS) without timely treatment and scores highly in terms of morbidity and mortality rates. Fritillaria hupehensis is a famous traditional Chinese medicine with antitussive, expectorant and anti-asthmatic effect. Here, the effects of F. hupehensis extracts on lipopolysaccharide (LPS)-induced ALI mice were evaluated for the first time. We showed ethyl acetate fraction (EAF) significantly reduced the leukocytes and neutrophils of bronchoalveolar lavage fluid (BALF) and the lung index as well as pro-inflammatory cytokines (TNF-α and IL-6) of lung homogenates but increasing the anti-inflammatory cytokines (IL-4 and IL-10). Additionally, the alleviation of EAF treatment on lung injury was verified through histopathological observations. Subsequent phytochemical investigation on bioactive fraction led to isolation of 17 compounds including two new, in which compounds 2, 5 and 6 exhibited better anti-inflammatory effect on LPS-induced 16 human airway epithelial (16HBE) cells model by inhibiting the production of CRP and PCT. Furthermore, compound 2 suppressed the LPS-induced upregulation of proteins containing p-p65, COX-2, Caspase-1 and IL-18. In summary, F. hupehensis alleviating LPS-induced ALI in mice may be associated with the anti-inflammatory activity of steroidal alkaloids by suppressing the NF-κB-regulated pro-inflammatory proteins.


Asunto(s)
Lesión Pulmonar Aguda , Alcaloides , Antiasmáticos , Antitusígenos , Fritillaria , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Antiasmáticos/efectos adversos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Caspasas/metabolismo , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Expectorantes/efectos adversos , Humanos , Interleucina-10/efectos adversos , Interleucina-18/efectos adversos , Interleucina-4/efectos adversos , Interleucina-6 , Lipopolisacáridos/toxicidad , Ratones , Estructura Molecular , FN-kappa B/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Factor de Necrosis Tumoral alfa
20.
Int J Biol Macromol ; 213: 574-588, 2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35643154

RESUMEN

Drought is one of the key threatening environmental factors for plant and agriculture. Phenylalanine ammonia lyase (PAL) is a key enzyme involved in plant defense against abiotic stress, however, the role of PAL in drought tolerance remains elusive. Here, a PAL member (FuPAL1) containing noncanonical Ala-Ser-Gly triad was isolated from Fritillaria unibracteata, one important alpine pharmaceutical plant. FuPAL1, mainly distributed in cytosol, was more conserved than FuCOMT and FuCHI at both nucleotide and amino acid levels. FuPAL1 was overexpressed in Escherichia coli and the purified recombinant FuPAL1 protein showed catalytic preference on L-Phe than L-Tyr. Homology modeling and site-mutation of FuPAL1 exhibited FuPAL1 took part in the ammonization process by forming MIO-like group, and Phe141, Ser208, Ileu218 and Glu490 played key roles in substrate binding and (or) catalysis. HPLC analysis showed that lignin and salicylic acid levels increased but total flavonoid levels decreased in FuPAL1 transgenic Arabidopsis compared to wild-type plants. Moreover, FuPAL1 transgenic Arabidopsis significantly enhanced its drought tolerance, which suggested that FuPAL1 mediated tolerance to drought by inducing the biosynthesis and accumulation of salicylic acid and lignin. Taken together, our results confirmed that the FuPAL1 played an important role in drought tolerance, and FuPAL1 might be a valuable target for genetic improvement of drought resistance in future.


Asunto(s)
Arabidopsis , Fritillaria , Arabidopsis/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Fenilanina Amoníaco-Liasa/química , Proteínas de Plantas/química , Ácido Salicílico/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA